Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations
نویسندگان
چکیده
In this note we study the temporal convergence of a locally implicit discontinuous Galerkin (DG) method for Maxwell’s equations modeling electromagnetic wave propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction. Key-words: temporal convergence, discontinuous Galerkin method, Maxwell equations, component splitting, order reduction ∗ INRIA Sophia Antipolis Méditerranée, France † Centrum Wiskunde en Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands in ria -0 05 65 21 7, v er si on 1 11 F eb 2 01 1 Convergence temporelle d’une méthode Galerkin discontinue localement implicite pour les équations de Maxwell Résumé : Dans ce papier nous étudions la convergence temporelle d’une méthode Galerkin discontinue localement implicite pour la résolution des équations de Maxwell modélisant la propagation des ondes électromagnétiques. En particulier, nous nous demandons si pour un raffinement du maillage, simultané et stable en espace-temps, le second ordre de convergence au sens des EDO est conservé pour la solution exacte de l’EDP. Cela n’est pas à priori clair en raison de la décomposition des éléments qui peut introduire une réduction d’ordre. Mots-clés : convergence temporelle, méthode Galerkin discontinue, équations de Maxwell, décomposition des éléments, réduction d’ordre in ria -0 05 65 21 7, v er si on 1 11 F eb 2 01 1 Temporal convergence of a locally implicit DG method for Maxwell’s equations 3
منابع مشابه
Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media
This paper is concerned with the approximation of the time domain Maxwell equations in a dispersive propagation medium by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the medium. We adapt the locally implicit time integration method from [1] and derive a convergence analysis to prove that the locally implicit DGTD method for...
متن کاملConvergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media
This study is concerned with the solution of the time domain Maxwell’s equations in a dispersive propagation media by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behaviour of the media. The resulting system of equations is solved using a centered flux discontinuous Galerkin formulation for the discretization in space and a second order ...
متن کاملHigh-Order Leap-Frog Based Discontinuous Galerkin Method for the Time-Domain Maxwell Equations on Non-Conforming Simplicial Meshes
A high-order leap-frog based non-dissipative discontinuous Galerkin timedomain method for solving Maxwell’s equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a N th-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh ...
متن کاملConvergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes
In this work, we discuss the formulation, stability, convergence and numerical validation of a high-order leap-frog based non-dissipative discontinuous Galerkin time-domain (DGTD) method for solving Maxwell’s equations on non-conforming simplicial meshes. This DGTD method makes use of a nodal polynomial interpolation method for the approximation of the electromagnetic field within a simplex, an...
متن کاملA non-conforming discontinuous Galerkin method for solving Maxwell's equations
This paper reviews the main features of a high-order nondissipative discontinuous Galerkin (DG) method recently investigated in [1]-[3] for solving Maxwell’s equations on non-conforming simplex meshes. The proposed method combines a centered approximation for the numerical fluxes at inter element boundaries, with either a secondorder or a fourth-order leap-frog time integration scheme. Moreover...
متن کامل